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ABSTRACT

The method of replication is frequently used by simulators to estimate
steady-state quantities. In this paper, we obtain conditions under which this
method yields asymptotically valid confidence intervals for steady-state

means.
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SIONIFLCANCL AND EXPLANATION

Consider a stochastic system which is stable in the sense that it obeys
an ergodic theorem. Simulators are frequently interested in estimating the
steady-state ergodic limit. FPor example, in a gueueinyg system, one often
wants to analyze the long-run number of customers in qgueue. One popular
method for estimating steady-state parameters involves generating independent
replicates of the stochastic system; each replicate consists of the time
evolution of the system up to some large (but finite) time horizon. 1In this
paper, we obtain conditions under which this easily implemented method yields

asymptotically valid confidence intervals for steady-state means.

The tesponsibility for the wording and views expressed in this descriptive
saneaary lies with MRC, and not with the author of this report.
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LIMIT THEOREMS FOR THE METHOD OF REPLICATION
Peter W. Glynn

1. Introduction

Let Y = {Y(t) : t » 0} be a real-valued stochastic process for which there exists a
constant r such that

Y(t) ==> r
- -1 (t

ag t + ®, where Y(t) = ¢t fo Y(s)de and ==> denotes weak convergence. The parameter

r is called the gsteady-state mean of Y.

Simulators are frequently interested in estimating steady-state means. One popular
procedure for accomplishing this, called the method of replication, involves simulating
independent copies of the procesa Y. The independence of the copies (alsoc known as
replicates) simplifies construction of confidence intervals, since certain classical
statistical procedures then become applicable; see LAW and KELTON (1982), Section 8.6, for
a discussion of this approach to steady-state simulation. Our purpose, in this paper, is
to determine precise conditions under which the method of replication is asymptotically
valid.

One important feature of this study is that we allow schemes in which the number of
replications is allowed to converge to infinity with the run-length of the simulation.
This is done for two reasons. Firstly, it has been ghown by Schmeiser [9]) that in an
agymptotic sense, confidence intervals with shortest expected length are obtained when one
bases the intervals on limiting normal distributions (as opposed to Student -~ t
statistics). As our paper indicates (see Proposition 3.1 and Corollary 3.9), the limiting
normal appears only when the number of replicates is allowed to diverge to infinity.

Secondly, infinite replicate schemes allow the simulator to consistently estimate a
parameter 02 (see Theorem 3.3), which is itself of some independent interest. The

parameter 02 measures the asymptotic variability of ;(t) (see (2.2)); if Y(t)

Spongored by the United States Army under Contract No. DAAG29-8B0-C~0041 and by the National
Science Foundation under Grant ECS-8404809.
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measures the cost of running a stochastic syscem at time t, then r 1is the long-run

2 by .
averaye ~ost, and O measures the extent to which the average cost Y(t) may deviate
2
from r over the interval ([0,t]. Thus, © may itself be important in determining the

suitability of a policy to be evaluated over a planning horizon of t time units duration.

2. A Central Limit Theorem for the Method of Replication

Let {YL : i » 1} be a sequence of i.i.d. replicates of the continuous-time process
“. ('n order to incorporate discrete-time stochastic sequences U = {Un : n > 0} into our

framework, we set Y(t) = U[t]' where [t] denotes the greatest integer less than or

equal to t.) A replication procedure is a non-decreasing function
m: R* + R" (R = [0,9)) for which there exists k : R* + {1,2,...} such tha«:
(2.1) 14) m(t) k(t) < t

ii.) m{t) k(t)/t * 1 as t + =

(1f m(t) > 0, k(t) can be taken to be [t/m(t)]). We interpret k(t) as the number of
replicates Y1,...,Yk(t), each simulated to time m(t), associated with a computer budget
uvf £ time units. Relation (2.1)i.) says that for each t 2 0, the replication procedure
must not use more time than is budgeted, whereas (2.1)ii.) requires that asymptotically one
uses all the time allotted. The estimator r(t) available after t time units of
cnmputer time is given by

k(t)

1 . —
c(t) =—— ) Y (m(t))
=1 1

k(t)
i

- -1t
chere Y (L) = ds.
bere ¥ (1) =t Io Y. (s)ds

hs o for the process Y, we shall assume throughout this paper that:

Lo i.) thers exist constants r and 0 € 0 < ® such that
1 /2 —_
X{t) = £ °(Y(t)=r) ==> oN(0,1)
as t * ®, where N(0,1) 1is a standard normal random variable (r.v.)

2 ;
11.)  the process (X“(t) @ t 2 0} is uniformly integrable

.
ilt.) Sup“'z IF;X(\’_)I bt 2 0} ¢ ™,

T T T S
WP PRI VR P P R WL PR R PR




Note that (2.2)i.) implies that Y(t) ==> r as t * ®, sgo that the parameter r |is

necessarily the steady-state mean of Y. Also, (2.2)ii.) is equivalent to requiring that
(2.3) vit) = EX3(r) » o?

as t * ®; gee Theorem 5.4 of BILLINGSLEY [l]. Conditions which guarantee (2.2i.) and
ii.) are available when Y is a real-valued functional of a discrete-time Markov chain
(see Theorems 1 and 3 in Section 16 of CHUNG [4]) or when Y is a real-valued functional
of a regenerative process (see Lemma 5 and Corollary 9.1 of SMITH [10])). A sufficient
condition for (2.2)iii.) is provided by Theorem A, given in the Appendix.

Our first limit theorem shows that under a mild restriction on the replication

procedure, r(t) is an asymptotically normal estimator for r.

(2.4) THEOREM. Suppose that mz(t)/t +® 38 t + <, Then,
1
£/2 (r(t) - r) ==> oN(0,1)

as t * &,

PROOF. By Theorem 2.3 of BILLINGSLEY {1}, it is sufficient to show that each sequence

t, * ® contains a subsequence tj; such that
V.
(2.5) (¢')72 (x(t?) - r) ==> oN(0,1)
n n
as n * ®, There are three cases to consider:

case 1: sup{k(tn) :n 2 1} < ®»: in this case, we can find a subsequence t; such that

k(t&) = k » 1 for all n. Then,
k
1 v .
(2.6) r(e) ~r=3 L (me)) -1 .
i=1

By (2.2)i.) and the independence of the Yi's it follows that
V2 3 7 .
v ] - -
(2.7) m(tn) (Y1(m(tn)) r,...,Yk(m(tn)) r)
==> cN(a,I)
as n * ®, where N(§,1) is a multivariate normal r.v. with mean vector § ana
covariance matrix I. By the continuous mapping principle (Theorem 5.1 of BILLINGSLEY [1])

> »
applied to the continuous function h{X) = (x; +...+ x)/k (x = (xll"'lxk))' (2.6) and

_3-




1S
1Y
R

=

- (2.7) show that
1 1
{2.8) m(t"_l)/z(r(t) ~ 1) => ok~ 250,

as n + ., But by (2.1)ii.), k m{tp)/ty + 1, so that (2.8) yields (2.5).

case 2: sup(k(tn) :n2>» 1 =« and o > 0: choose a subsequence t;, such that

“
.‘ k(tp) » ® as n + ®. Note that
v, k(tl)
(2.9) ()2 (e(t"') =) o )7 oz, +B
n n n . in n
. i=1
- where
. Zip = Y (Y, (m(t})) = Er(e}))
1 1
Y = m(e9)72 Zix(e I vim(ts)))72
n n n n
V. 1.
a = (t'vim(t')))’2 /(k(t'Im(t*))"2
— n n n n n
]

1
Bn = (t;l)/z (Er(el) = r} .

since Er(ty) = EY(m(t!)), it follows that

1 1
- 2 /2 /2 .
Bn (t;/m (t;)) m(tn) Ex(m(tn))

Also, by (2.3) and (2.1)ii.), Q’n +d as n * ®. To treat the sum in (2.9), we view the

and hence (2.2)iii.) shows that the assumption mz(t)/t + ® forces Bn to tend to zero.

family of r.v.'s {zin : V<4 S k(t!), n > 1} as a triangular array. Note that EZ; = 0
n and
L]
k(tn) ,
L EZf, =1 .
i=1
Furthermore, by Chebyshev's inequality,
\ 2 I-:an 1
) max P{Zin>e}<——e—=k(—t,—)—€-¢o
. 1<ick(t"*) n
.- n
s as n * ®°, go we conclude that {Zin} is holospoudic (see p. 196-206 of CHUNG (5] for
- results and definitions). To show that
- [
) k(tn)
: (2.10) L 2y, ==> N(0,1)
ji=1
-4-
]
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as n * ®, we need to verify Lindeberg's condition. Observe that for n > 0,

3
k(t;) ~
-
I ez 522 > -
im1 in in E
(2.11) b
. . 2 2 . 2 2 \ ’
k(tn)E{Zin 12y >} :-:{vn A k(tn)n} -
#
2 - ' v v - ] 2 ] :"
where Vo m(tn)(Y(m(tn)) Et(tn)) /V(m(tn)). But ;
v2 < 2vim(t’ )" (3 (m(e')) + (Ex(m(t’)))?) "Z"
n n n n -4
so that (2.2)ii.) and ijii.) imply that {Vi) is uniformly integrable; thus, (2.11) goes to 'j
zero as n * », verifying (2.10). ﬂ
4
-]
case 3: sup(k(tn) :n>»1} =» and o =0 , ]
We shall reduce this case to the one above, in which 02 >0. Let Y be the process d
"4
defined by :
~ - -1 E
¥(e) = v(e) + 27 N0, e 72 [
where N(0,1) is independent of Y. Then,
~ 1 - ~ -
Ry = /27! J§ (¥(8) - r)de) = x(t) + N(O,1) ’
satisfies (2.2)i.) - iii.). From case 2, it follows that -
1 ~ 3
(2.12) 2 (F(t) = £) ==> N0, 1) "]
ag t * ®. But the left-hand side of (2.12) has the distribution of .
i
1
(2.13) 2 (£(t) - 1) + N0, 1) ,;4
R
where N(0,1) is independent of r(t). Letting c(t,u) be the characteristic function of N
1 .
t/b(r(t) - r), {(2.12) and (2.13) prove that q
-l 2 -]
clt,u) * e 2, e~u/2 -
as t * ®, and hence c(t,u) + 1 for all u. So, -9
1 A
t2(r(t) = 1) ==> 0 . g
Thie theorem shows that the length of each replication should asymptotically dominate
the total number of replicates, in the sense that m(t)/k{(t) *+ ® ag t + =,
-5_
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3. Confidence Intervals for the Method of Replication. :
Theorem 2.4 does not readily yield confidence intervals for r, since it involves the I
L
unknown constant 0. The type of confidence interval to be used depends on the behavior 9
L
4
of  k(t). F
“
9
(3.1) PKROPOSITION. Suppose o2 > 0 and Kk(t) Kk >2. Let i
k(t)
rt) = ———— } (Y. (m(t)) - r(t))2 . }
k(t)-1 ¢ i §
i=1
Then,
1 1
(3.2) K2 (r(t) = £)/T72 (t) ==> ty i
as ot @, where t._4; 1is a Student-t r.v. with k - 1 degrees of freedom.
PROCF. For any sequence tﬁ converging to infinity, relation (2.7) holds. Applying the
continuous mapping principle to the functicn
k
+ Vo — 1 — 2.~V
= x/2 _— - 2
h(x) = k2% (= 'Z (x, = %)) '
i=1
- . . 2
where X, = (x1 Faaot xk)/k (note that h is appropriately continuous since O > 0), we
find that
Y. V.
2 vy oo 2 vy __ .
K€ xel) r)/T (e}) ==> ¢, 4
this proves (3.2).
13.3) THEUREM. Assume that the process (x%t) : t >0} is uniformly integrable. If
“(t) **® as t * *® and mz(t)/t + ® as t * @, then
m(t)T(t) ==> o2
AL r v =
PLoF.  Note that
k{t)
k{t)=1 1 . - 2
) —_— = Y, t - r(t
$.4) T M) = e _2 m(t) (Y, (m(t)) (t))
i=1
k(t)
1 - 2
Ty .)‘ mit) (Y (m(t)) = r)
i=1
- mit)(r{t) - r)2 .
-6-
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By Theorem 2.4, t{r(t) ~ r)? ==> 02N(0.1)2 as t * ® (continuous mapping with o1
hix) = x%), so =
(3.5) me) (r(t) = 02 = MEL o ere) - 2 == 0
as t * ®, by (2.1)ii.) and the fact that k(t) * ». As for the other term in (3.4), note .
that 2.
— 2 el
(3.6) m(t)E(Y, (m{t)) - r)" = v(t)
and T
k(t) _ , .
var{irsy 'l m(t)(Yi(m(t)) - )% )
i=1 .
(3.7) .
1 4 2 B
Ty {e|xt)] vl
since (x%(t) : t > 0} is uniformly integrable, it follows that Ex4(+) is a bounded i
function (see (5.1) of [1]) so that (2.3) implies that the variance term (3.7) tends to ——
zero as t + ®, By Chebyshev's inequality,
. k(®) _ 2 -
Pl ) me) (Y (m(t)) - 1)° = v(e)]| > €} ]
k(t) i
i=1 - 4
4
1 k(e _ 2
< - .
var(k(t) .l m(t)(Yi(m(t)) n‘) +o -
i=1
—4
as t * ®, by (3.6) and (3.7). Thus,
. k(e _ 5 =
(3.8) — m(t)(Y (m(t)) - r)" - v(t) ==> 0 J
k(t) . i 2]
i=1 »
as t * >, Combining (2.3), (3.4), (3.5), and (3.8) yields the result. 1
T4
The following corollary is immediate from Theorems 2.4 and 3.3. ]
Y
(3.9) COROLLARY. Under the assumptions of Theorem 3.3, R
1 1 ]
(3.10) 2 (2(t) = 1)/(m(E)T(£)) 2 ==> N(O,1) .
2 ]
as t * ® provided 9 > 0. ]
Generation of confidence intervals for r, based on the limit theorems (3.2) and -J
(3.19), is straightforward. A condition guaranteeing that {X4(t) : t » 0} is unitormly
integrable is given by Theorem B in the Appendix. }
1
3
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Appendix

i ko

Let Y be a non-delayed regenerative process with regeneration times

0 = T(0) < T(1) <... . (See p. 298-302 of CINLAR [6]) for a discussion of regenerative :
processes.) Assume that ;
(a1) e /3" (4 usias)® <o i
Then, SMITH (10] proved that Y satisfies (1.2)i.) and ii.) and that the steady-state mean ﬂ
has the representation E

(A2) r = 63" visras/En(n) .

set T, = T(k) - T(k=1), N(t) = max{k > 0 : T(k) < t}, and

T(i)

T(i-1) (Y(s) - r)ds .

Z; =
THEOREM A. Under (A1), (2.2)iii.) is satisfied.

PROOF. It is easy to see that

N N(t)+1
(a3) [y ¥is)as - re = ) z,

T(N(t)+1)
- It
k=1

(Y(8) - r)ds .
From (A1), it is obvious that E(|Z1| + 11) < ® and thus Wald's identity implies that

N(t)+1
E( ) z,) = E(N(t)+1) * B3 .
k=1

(see p. 137 of CHUNG [5].) By the definition of 32,, (A2) proves that EZ, = 0 and thus
the first term on the right-hand side of (A3) vanishes. For the second term, set

= 5(JTNE D ye) - rras) .

(A4) a(t)
A simple renewal argument shows that a satisfies the renewal equation
a(t) = b(t) + (a * F)(t)

where * denotes convolution and

bee) = ([T (x(e) - r1ds ; T(1) > ¢}

F(t) = P{T(1) < ¢} .

Since
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[N“i*‘ T(X)

T(k-1)'Y(S) - rlds)

a(t) < E
k=1

CENE) + 1) 2 BT )v(s) - rids) <=
0 |

by Wald's equality and (A1), it is clear that a(+) is bounded over finite intervals.

Hence, by Theorem 2.3 of ¢INLAR (6],

(RS) a(t) = (b * UX(t)
o
where U(t) = ) P{T(k) < t} = EN(t) + 1. But
k=0
bee) < BTN (v(e)] + mas 5 T(1) > v}

< Loplnn)? f:(1)(|Y(a)| +1r)ds 1 T(D) > t)
t

« Loetrn? [7v(s)]as + rr(1)%)
t

and thus *+(t) € c, min{1, t-z} for some <y, So, there exists a and ¢y such that

1

(R6)
la(e)] = |f[o,c1 b(t-8)U(ds) |

c. t7u(ds

c, Uds) + [0 a) 2

< j(t-a,t] 2

< cz(U(t) - U(t=a)) + €, u(t)/t

the first term above is bounded in t by relation (1.7), p. 360, of FELLER (7], whereas

the second is bounded by the elementary renewal theorem (see Theorem 5.5.2 of CHUNG {5]).

From (A4) and (AS), it is evident from (A3) that

E(fg Y(s)ds - rt)

is a bounded function of t, proving the theorem.

THEOREM B. Assume (A1) holds. Then,

EX(t)? + 309

as t *+ =, and (x%e) : v 2 0} is uniformly integrable.

. ““T ‘:'




Apyiying the Burkholder inequality a second time, we find that
. Nit)+] 3 N(t)+1 5 3/2 N(t)+1 2 2
- A u. | <c3s( ) v?) <c3[1 +E( ) i) ) .
.z b .z i 1 3

b j=1 =1 bid

PJ. Teemma S of SMITH [10] proves that under (A1),

b

s N(t)+1 P 2

i var( ) v¢) = o)

{ 3=1 J

[ 2
- Wil t'. quality therefore implies that the right-hand side of (A10) is 0(t°).
t‘ iv. lemma A12, we conclude that the bound in (A9) is o(t3), so that (A8) proves that
b, -

3

. .

F ~-10-

L

b

} .

- .

| @

b, 2L L s . e ’
:'_c; AP S A S SN s

A B 8 A ASEE RO Sl

PrOUF. Note that

n
M(n) = )} 2
k=1

dCan S A A

15 a martingale. For t fixed, set M, = M((N(t)+1) n), where a b = min(a,b).

Since N(t) + 1 is a stopping time, it follows that (Mn :n? 1} is also a martingale.
1 See Proposition 5.26 of BREIMAN (2].)
Let D, =M, - M _q = an{N(t)+1 > n}. By Burkholder's [3]) square function

inequality for martingales
o 3 N(t)+1 3
; 2
(A7) max EMC ¢ ¢ E( ) 0?) =c.E( ) z°)
16k 3=1 3 j=1 )

R e S E e Y

where ¢y = 18(k3/2/(k=1))%. Note that since N(t) < = a.s., M_ > M(N(t)+1) a.s. as

w % ®, By (A7) and Fatou's lemma,

6 N(t)+1 2 3 ]
Em(N(t)+1)6 < lim EM < CGE( 2 zj) .
n+e J=1

o
&

setting UJ = Z% - EZ%, observe that Minkowski's inequality yields
N(E)+T 3 N(t)+1 2 3 !
(A9) el ) 7°) E( ) U, + E27e(N(t)+1))
PP = 9 !

i

N(t)+1 3
1/3
(77 )

u |} + 8322V 3 e+ ?)

=1 3 !

N(t)+1 {
< 8 max(E|] )} Uj|3, Ezi-E(N(t)+1)3) .
3=1
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N e
(A11) v+ ® = () z2.)7 =0t . -
=17
Furthermore, we have that ’
N(t)+1 A
TIN(t)+1 6 ‘
eJTNE*T (vie) - nas® < g( ) (IT(?) lt(s) - r|ae)®)
t 521 T(j=1)

which is 0O(t) by Wald's equality and (Al1). So, by Minkowski's inequality and (A3), we

e = al

find that .-
6
sup EX(t) <= ; .
t -
4 , , 4 4 4 4 -
thus {X (t) : t > 0} is uniformly integrable and EX“(t) * 0 EN(0,1) = 30 as t + =,

) ‘
L‘.ALL _.'.:_J

et

(A12). LEMMA. If ET(1)™ ¢ » for some m » 1, then E(N(t) + 1)® = o(t®) as t *+ =,

PROOF. 1t is well known that for any non-negative r.v. N, EN" is bounded by a multiple

A & o o o

of

r) - <
(A13) box™ U pin >k} .
k=1 f_»
"

since {N(t) + 1 2 k} = {T(k) € t}, (A13) is bounded by
(A14) § k™t e Y k™ p{ro) <t - ku) -
k<2t/u k>2t/u .4
(u = ET(1), T(k) = T(k) = kk); comparison of the first term in (A14) with the integral f:
4
of gix) = ¥ ' shows that it is of order 0(t™). For the second term, observe that if 1
4
-1

k > 2t/u, then uk/2 < pk - t so that term is dominated by

(A15) Y k™ V(T > wks2) .
k>2t/u

]

By Chebyshev's inequality and (A1), the probability in (A15) is bounded by

er(x)8/(uk/2)8, which is 0(k™%). (since ET(K)® = 0(k%), as may be verified

algebraically.) Thus, (A15) is summable and bounded in t; (A14) then yields our result.

,‘
I

-—v

It is worth noting that (A1) is automatically satisfied when Y corresponds to an .

irreducible finite state Markov chain, in either discrete or continuous time.
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